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Large-scale simulations of diffusion-limitedn-species annihilation
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~Received 1 January 2003; published 21 April 2003!

We present results from computer simulations for diffusion-limitedn-species annihilation,Ai1Aj→0 (i , j
51,2, . . . ,n; iÞ j ), on the line, for lattices comprising of up to 228 sites, and where the process proceeds to
completion~no further reactions possible!, involving up to 1015 time steps. These enormous simulations are
made possible by the renormalized reaction-cell method. Our results suggest that the concentration decay
exponent forn species isa(n)5(n21)/2n instead of (2n23)/(4n24), as previously believed, and are in
agreement with recent theoretical arguments of Deloubrie`re et al. We also propose an expression forD, the
correction-to-scaling exponent for the concentration decay, defined byc(t);t2a(A1Bt2D).
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I. INTRODUCTION

Diffusion-limited reactions have attracted much interes
recent years@1,2#. The kinetics of such systems is dominat
by local fluctuations in the concentration of the reactan
thus posing a formidable problem that has not yet b
solved: there exists no comprehensive theoretical appro
for the analysis of diffusion-limited processes.

Few select models are amenable to exact analysis. T
include one-species annihilation,A1A→0, and two-species
annihilationA1B→0 ~see Ref.@3#, and references therein!.
In one dimension, the particle density for one-species a
hilation decays asc(t);t21/2, while for two-species annihi-
lation ~with equal initial concentrations and same diffusi
constants for the two species! c(t);t21/4. In either case, the
result is strikingly different from the mean-field kinetics
the corresponding reaction-limited process,c(t);1/t. To
bridge the gap between these disparate behav
ben-Avraham and Redner@4# proposed then-species annihi-
lation model, where particles belonging to then species
A1 ,A2 , . . . ,An diffuse on the line and react immediately u
pon encounter, according to the scheme

Ai1Aj→0, i , j 51,2, . . . ,n, iÞ j . ~1!

For n52, we recover the two-species annihilation, while
the limit n→` encounters between like particles are impro
able and the model is equivalent to the one-species anni
tion. For intermediate values ofn, one expectsc(t)
;t2a(n).

In Ref. @4# it was proposed, following a heuristic scalin
argument and treating fluctuations via the van KampenV
expansion@5#, thata(n)5(2n23)/(4n24). This was sup-
ported by numerical simulations of lattices of typically 16

sites, and up to 106 time steps.~In one time step, all the
particles in the system move one lattice spacing each, o
average.! Recently, we have conducted extensive numer
simulations@6# following the method of renormalized reac
tion cells ~RRC! @7–9#. The systems involved are up to 228

'2.73108 sites long, and the processes were simulated
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completion~until no further reactions are possible!, for up to
1015 time steps. The new data lead us to the conjecture
a(n)5(n21)/2n @6#. We also find a correction to the mai
decay mode, of the formc(t);t2a(n)(A1Bt2D(n)), D(n)
51/2n. The same results were found, independently~and
unbeknownst to us!, by Deloubrière et al. @10#. In their the-
oretical derivation, they consider a simplified version of t
n-species annihilation, where domains of alternating spe
lose particles to reactions at one and the same rate in a
chronous fashion. The approximation is more than reas
able, yet it does not rigorously apply to the original mod
and analysis of corrections is certainly beyond its sco
Moreover, the simulations in Ref.@10# are comparable in size
to those in Ref.@4#. In what follows, we report the results o
our large-scale simulations, which strongly support the c
clusions of Ref.@10#. We also propose a scaling relation fo
the correction exponentD for then-species annihilation, and
possibly for other reaction models where particles segreg
into distinct domains.

II. SCALING

As is well known, local fluctuations in the concentratio
of the different species drive the kinetics of then-species
annihilation@2–4#. An initially random homogeneous distri
bution of the particles evolves into a continuously growi
mosaic of domains of alternating surviving species. T
length scales characterize the emerging distribution
dominate the system: the interdomain distance—the dista
between the last particle in a domain and the first particle
the domain next to it—,AB(t), and the domain length,,(t)
@11#. These quantities grow with time as

,~ t !;tb, ,AB~ t !;tg. ~2!

Once the domains form, reactions might take place only
the domain boundaries, and the particles have to diff
across the domain gap,AB to react with other species. Thi
takes a typical time ofDt;,AB

2 /D, whereD is the diffusion
constant. The change in particle concentration during ti
Dt equals the total number of domain boundaries divided
the lattice sizeL; Dc;2(L/,)/L521/,. Thus,
©2003 The American Physical Society01-1
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FIG. 1. Comparison between the tradition
~circles! and RRC~solid line! simulation meth-
ods. Plotted are the number of surviving particl
N(t) ~left! and the negative local slopea(t)5
2d lnN(t)/d lnt ~right! for 216-site lattices.
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. ~3!

On substituting relations~2! and c(t);t2a, we derive the
scaling rule

2g1b2a51. ~4!

Due to the underlying transport mechanism, we expect
domains grow diffusively, as,;t1/2, so b51/2, and in ef-
fect there is only one independent exponent: 2g2a51/2.
The general scaling form holds also for the two-species
nihilation in the presence of drift~and with hard-core repul
sion between like species!, wherea51/3, b57/12, andg
53/8 @9#.

III. SIMULATION RESULTS

The n-species annihilation process is traditionally sim
lated as follows. The sites of a one-dimensional lattice
either empty or occupied by a particle~of one of then spe-
cies!. Periodic boundary conditions are imposed, so the
tice is effectively a ring. At each Monte Carlo step, a parti
is chosen randomly and is moved to the nearest site to
right or left with equal probabilities. If the target site is o
cupied by a particle of a different species, then both partic
are removed from the system, mimicking reaction~1!. If the
target site is occupied by a particle of the same species,
the move is disallowed and it does not take place. Regard
of the outcome, time is incremented by 1/N(t), whereN(t)
is the total number of extant particles.

As the simulation proceeds, the particle concentration
clines and the typical distance between particles increa
The time spent on simulating the diffusive motion of t
particles until they interact grows even faster, as the squ
of the distance between them. Because of that, comp
simulations are limited to relatively short times. This pro
lem is overcome by the RRC method@7–9#.

In the RRC method, the particles occupy cells, rather t
sites. Each time the concentration is halved, the cells
renormalized: every two cells are merged into one, and
time is renormalized accordingly. The typical time requir
to diffuse out of a renormalized cell twice as large as tha
the previous generation is four times longer. Thus, phys
time is simulated faster with each renormalization step
the process can be simulated to completion. Other details
the implementation of the RRC method are discussed in R
@9#.
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Simulations were performed on DEC Alpha process
running Linux. Since each lattice site requires six bytes~for
species, number of particles, and a pointer to a list of po
lated sites that is used for fast selection at each Monte C
step!, with 2 gigabytes (231 bytes! memory we were able to
simulate lattices comprising of up to 228 sites. The compiler
was given special #pragma pack~1! instructions to circum-
vent word alignment~which would allocate 32 bytes for ou
6-byte site!.

To test the technique, we have simulated the casesn
52 and n53 on lattices of 216565 536 sites, in both the
RRC and the traditional simulation method. These lattic
are small enough to enable the simulation of the process
the traditional method to completion. On the other hand,
system is large enough to let us examine the effect of
renormalizations: with 216 sites andc(0)51/16 the RRC
method requires 12 renormalizations. In Fig. 1~a!, we com-
pare the particle concentration as obtained by the two m
ods. In Fig. 1~b!, we plot the negative of the local slope o
the curves, the exponenta(t). The renormalizations are dis
cernable only in this second, more stringent test, but
overall agreement is excellent. Similar results were obtai
for the domain size and the distance between domains.

Having gained some confidence in the RRC method,
proceed to larger simulations. In Fig. 2, we show the surv
ing number of particles,N(t), at timet, for n53, 4, and 5,
and several lattice sizes. In Fig. 3, we plot the local dec
exponenta(t) for our largest simulations ofn53. The
maximum of the curve att'104 agrees with the earlie
simulations in Ref.@4#, where a value somewhat smaller tha
the theoretical 3/8 had been reported. However,a(t) is seen
to diminish with time, suggesting a long-time asympto

FIG. 2. Concentration decay forn53, 4, and 5-species annihi
lation. Plotted is the number of surviving particles,N(t), for system
sizesL5216, 220, 224, and 228 ~bottom to top!.
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limit of a'1/3. This limiting value is confirmed in the dat
collapse~especially at long times! of Fig. 4, where we plot
tac(t) vs tb/L for various system sizes, anda51/3, b
51/2. Independent measurements show thatb51/2, as as-
sumed, to within 2%, and the data collapse of Fig. 4 de
riorates with other choices for the values ofa andb.

We have analyzed in this fashionn53, 4, and 5-species
annihilation, and measured the exponentsa, b, andg. Our
results are summarized in Table I. In all cases, the sca
relation ~4! seems to hold, andb51/2 to within numerical
errors. Looking for a simple expression of these results
would have the appropriate limits for the known cases on
52 ~two-species annihilation! andn→` ~one-species anni
hilation!, we were led to the conjecture@6#

a5
n21

2n
, b5

1

2
, g5

2n21

4n
, ~5!

a result derived independently by Deloubrie`re et al. @10#
Finally, let us address the issue of corrections to scalin

the concentration decay. We look for corrections of the fo
@12#

c~ t !;t2a~A1Bt2D!, ~6!

whereA and B are constants. Our strategy consists of p
forming a least-squares linear fit ofA1Bt2D to tac(t), for
different powersD, and searching for the value ofD which
minimizes the error. The expression~6! is expected to work

FIG. 3. Local decay exponent for three-species annihilation.

FIG. 4. Scaling of concentration,c(t)5t2ar(tb/L), for three-
species annihilation. The best data collapse at late times is obta
for a51/3 andb51/2 ~shown!.
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only after the asymptotic regime sets in, and before fin
size effects begin, and the sticky part of our procedure
cides which times demarcate this region. Experimenting w
different choices gives us an idea about the errors involv
In Fig. 5, we show the best fits for the regiont5106–1012

for n53 on aL5228 lattice, where our data is most reliabl
The results are most compatible withD51/6 @assuming
a(3)51/3]. Similar tests for other values ofn lead us to the
conjecture thatD(n)51/2n.

The correction exponent can be understood by a sim
minded argument. In deriving Eq.~3! we have assumed tha
the typical distance between reacting particles, at the ed
of adjacent domains, is,AB . While this is correct, we note
that, had the distribution of particles been homogeneous,
distance between reacting pairs would be typically,AA
;L/c;ta, quite different from the assumed,AB;tg. Using
Dt;,AA

2 /D in Eq. ~3!, instead of,AB
2 /D, yields a faster de-

cay;c;t2(12b). Diffusion provides a natural drive toward
homogeneous distribution, and so it is conceivable that
faster mode of decay is manifested as a correction to
main behavior,c;t2a. It follows from Eq.~6! that the cor-
rection exponent is

D512b2a5
1

2n
, ~7!

where the last equality applies to then-species annihilation,
provided that the conjecture~5! holds. The more general re
lation works well for the two-species annihilation with drif
wherea51/3, b57/12, andD51/12 @9#.

IV. SUMMARY AND DISCUSSION

We have presented large-scale simulation results
diffusion-limited n-species annihilation, in one dimensio

TABLE I. Exponentsa, b, andg.

n a

n21

2n b g

2n21

4n

3 0.33~1! 0.333 0.50~1! 0.42~2! 0.417
4 0.39~2! 0.375 0.50~1! 0.44~1! 0.434
5 0.42~2! 0.400 0.50~1! 0.47~2! 0.450

ed FIG. 5. Corrections to scaling. Simulation results~circles! are
best fitted by Eq.~6!, with D51/6 ~solid line!.
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using the RRC method. Our simulations contradict previo
work @4# and are in favor of new theoretical arguments a
vanced by Deloubrie`re et al. @10#. We have also provided a
expression for the correction-to-scaling exponentD, valid
for diffusion-limited reactions in one dimension, where t
particles segregate into alternating domains. The correct
to the main decay mode are large, and explain the failur
Ref. @4# to obtain the correct asymptotic behavior with t
size of simulations employed at that time. An important co
clusion to be drawn is that predicting asymptotic behav
ing

.

7

,

04010
s
-

ns
of

-
r

from the typical size of simulations used commonly in t
field is dangerous. More advanced techniques and la
simulations seem to be imperative.
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