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We present results from computer simulations for diffusion-limitespecies annihilatiord;+A;—0 (i, ]
=1,2,...n;i#]), on the line, for lattices comprising of up td®sites, and where the process proceeds to
completion(no further reactions possiblenvolving up to 18° time steps. These enormous simulations are
made possible by the renormalized reaction-cell method. Our results suggest that the concentration decay
exponent fom species ise(n)=(n—1)/2n instead of (h—3)/(4n—4), as previously believed, and are in
agreement with recent theoretical arguments of Deloubsge al. We also propose an expression foy the
correction-to-scaling exponent for the concentration decay, definethy-t~*(A+Bt™2).
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[. INTRODUCTION completion(until no further reactions are possipléor up to
10 time steps. The new data lead us to the conjecture that
Diffusion-limited reactions have attracted much interest ina(n)=(n—1)/2n [6]. We also find a correction to the main
recent year$l,2]. The kinetics of such systems is dominateddecay mode, of the forna(t)~t~“M(A+Bt=2M), A(n)
by local fluctuations in the concentration of the reactants=1/2n. The same results were found, independefidgd
thus posing a formidable problem that has not yet beemnbeknownst to Us by Deloubrige et al. [10]. In their the-
solved: there exists no comprehensive theoretical approadretical derivation, they consider a simplified version of the
for the analysis of diffusion-limited processes. n-species annihilation, where domains of alternating species
Few select models are amenable to exact analysis. Thesese particles to reactions at one and the same rate in a syn-
include one-species annihilatioA+ A— 0, and two-species chronous fashion. The approximation is more than reason-
annihilationA+B—0 (see Ref[3], and references thergin  able, yet it does not rigorously apply to the original model,
In one dimension, the particle density for one-species anniand analysis of corrections is certainly beyond its scope.
hilation decays as(t)~t~*2, while for two-species annihi- Moreover, the simulations in R€fL0] are comparable in size
lation (with equal initial concentrations and same diffusion to those in Ref[4]. In what follows, we report the results of
constants for the two species(t)~t~ %4 In either case, the our large-scale simulations, which strongly support the con-
result is strikingly different from the mean-field kinetics of clusions of Ref[10]. We also propose a scaling relation for
the corresponding reaction-limited proces$t)~1ft. To the correction exponert for the n-species annihilation, and
bridge the gap between these disparate behaviorgossibly for other reaction models where particles segregate
ben-Avraham and Redng4] proposed the-species annihi- into distinct domains.
lation model, where particles belonging to the species
AiA,, ... A, diffuse on the line and react immediately up-
pon encounter, according to the scheme Il. SCALING
o o As is well known, local fluctuations in the concentrations
AitA—=0, 1,j=12,...p, i#]. D of the different species drive the kinetics of thespecies
) o . annihilation[2—4]. An initially random homogeneous distri-
Forn=2, we recover the two-species annihilation, while inption of the particles evolves into a continuously growing
the limit n—c encounters between like particles are improb-mosaic of domains of alternating surviving species. Two
able and the model is equivalent to the one-species annihilgangth scales characterize the emerging distribution and
tion. For intermediate values of, one expectsc(t)  dominate the system: the interdomain distance—the distance
~tmem, between the last particle in a domain and the first particle in
In Ref. [4] it was proposed, following a heuristic scaling the domain next to it-,5(t), and the domain lengttt,(t)
argument and treating fluctuations via the van Kamgpken [11]. These quantities grow with time as

expansior5], thata(n)=(2n—3)/(4n—4). This was sup-
ported by numerical simulations of lattices of typically®10
sites, and up to fOtime steps.(In one time step, all the
particles in the system move one lattice spacing each, on an
average. Recently, we have conducted extensive numericaPnce the domains form, reactions might take place only at
simulations[6] following the method of renormalized reac- the domain boundaries, and the particles have to diffuse
tion cells (RRO) [7-9]. The systems involved are up t6%2 across the domain gafug to react with other species. This
~2.7x10° sites long, and the processes were simulated ttakes a typical time oAt~€,§B/D, whereD is the diffusion

constant. The change in particle concentration during time

At equals the total number of domain boundaries divided by

*Electronic address: benavraham@clarkson.edu the lattice size_; Ac~—(L/¢)/L=—1/¢. Thus,

() ~th,  Lpp(t)~t7. 2
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FIG. 1. Comparison between the traditional
(circles and RRC(solid line) simulation meth-
ods. Plotted are the number of surviving particles
N(t) (left) and the negative local slope(t)=
—d InN(t)/dInt (right) for 21%-site lattices.

Simulations were performed on DEC Alpha processors
3 running Linux. Since each lattice site requires six byfes
species, humber of particles, and a pointer to a list of popu-

lated sites that is used for fast selection at each Monte Carlo

On substituting relation$2) and c(t)~t~“, we derive the

step, with 2 gigabytes (3! bytes memory we were able to

scaling rule simulate lattices comprising of up t&®sites. The compiler

2y+B—a=1. (4)

Due to the underlying transport mechanism, we expect tha@'
domains grow diffusively, ag~t? soB=1/2, and in ef-
fect there is only one independent exponeny—2a=1/2.
The general scaling form holds also for the two-species an-
nihilation in the presence of drifand with hard-core repul-
sion between like specigswherea=1/3, B=7/12, andy

was given special #pragma patk instructions to circum-
vent word alignmentwhich would allocate 32 bytes for our
byte site.
To test the technique, we have simulated the cases of
=2 andn=3 on lattices of 3°=65536 sites, in both the
RRC and the traditional simulation method. These lattices
are small enough to enable the simulation of the process by
the traditional method to completion. On the other hand, the

=3/8[9] system is large enough to let us examine the effect of the
' renormalizations: with ¥ sites andc(0)=1/16 the RRC
method requires 12 renormalizations. In Figa)1 we com-

IIl. SIMULATION RESULTS

pare the particle concentration as obtained by the two meth-

The n-species annihilation process is traditionally simu-0ds. In Fig. 1b), we plot the negative of the local slope of
lated as follows. The sites of a one-dimensional lattice ardhe curves, the exponen{(t). The renormalizations are dis-
either empty or occupied by a partiolef one of then spe-  cernable only in this second, more stringent test, but the
cies. Periodic boundary conditions are imposed, so the latoverall agreement is excellent. Similar results were obtained
tice is effectively a ring. At each Monte Carlo step, a particlefor the domain size and the distance between domains.
is chosen randomly and is moved to the nearest site to its Having gained some confidence in the RRC method, we
right or left with equal probabilities. If the target site is oc- Proceed to larger simulations. In Fig. 2, we show the surviv-
cupied by a particle of a different species, then both particle§’d number of particlesN(t), at timet, forn=3, 4, and 5,
are removed from the system, mimicking reactian If the ~ and several lattice sizes. In Fig. 3, we plot the local decay
target site is occupied by a particle of the same species, the@xponenta(t) for our largest simulations oh=3. The
the move is disallowed and it does not take place. Regardleggaximum of the curve at~10" agrees with the earlier
of the outcome, time is incremented byN{t), whereN(t) simulations in Ref[4], where a value somewhat smaller than

is the total number of extant particles.

the theoretical 3/8 had been reported. Howewuét) is seen

As the simulation proceeds, the particle concentration deto diminish with time, suggesting a long-time asymptotic

clines and the typical distance between particles increases.
The time spent on simulating the diffusive motion of the
particles until they interact grows even faster, as the square
of the distance between them. Because of that, computer
simulations are limited to relatively short times. This prob-
lem is overcome by the RRC methpd-9|.

In the RRC method, the particles occupy cells, rather than
sites. Each time the concentration is halved, the cells are
renormalized: every two cells are merged into one, and the
time is renormalized accordingly. The typical time required
to diffuse out of a renormalized cell twice as large as that of
the previous generation is four times longer. Thus, physical
time is simulated faster with each renormalization step and
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the process can be simulated to completion. Other details for FIG. 2. Concentration decay for=3, 4, and 5-species annihi-
the implementation of the RRC method are discussed in Refation. Plotted is the number of surviving particlég), for system
[9]. sizesL =26 220 224 and 22 (bottom to top.
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t size effects begin, and the sticky part of our procedure de-
cides which times demarcate this region. Experimenting with
different choices gives us an idea about the errors involved.
In Fig. 5, we show the best fits for the regios 10°—10'2

for n=3 on aL = 2?8 |attice, where our data is most reliable.
The results are most compatible with=1/6 [assuming
a(3)=1/3]. Similar tests for other values aflead us to the
conjecture thai\ (n) =1/2n.

The correction exponent can be understood by a simple-
minded argument. In deriving E¢3) we have assumed that
the typical distance between reacting particles, at the edges

f adjacent domains, 6,5 . While this is correct, we note

at, had the distribution of particles been homogeneous, the

a({iistance between reacting pairs would be typicafly,

~L/c~t%, quite different from the assumegz~t”. Using

At~¢3,/D in Eq. (3), instead oft45/D, yields a faster de-

cay;c~t~ (1A Diffusion provides a natural drive toward a

homogeneous distribution, and so it is conceivable that this
_ 1 2n—-1 faster mode of decay is manifested as a correction to the

a=—5—, pB= 5 Y= 5 main behaviorc~t~“. It follows from Eq.(6) that the cor-

rection exponent is

FIG. 3. Local decay exponent for three-species annihilation.

limit of a~1/3. This limiting value is confirmed in the data
collapse(especially at long timesof Fig. 4, where we plot
t*c(t) vs tP/L for various system sizes, and=1/3, B
=1/2. Independent measurements show Batl/2, as as-
sumed, to within 2%, and the data collapse of Fig. 4 dete
riorates with other choices for the values®fand 8.

We have analyzed in this fashion=3, 4, and 5-species
annihilation, and measured the exponesmts3, andy. Our
results are summarized in Table I. In all cases, the scalin
relation (4) seems to hold, an@=1/2 to within numerical
errors. Looking for a simple expression of these results th
would have the appropriate limits for the known case® of
=2 (two-species annihilatigrandn—c (one-species anni-
hilation), we were led to the conjectufé]

a result derived independently by Deloubeet al. [10]
Finally, let us address the issue of corrections to scaling of A=1-B—a=

the concentration decay. We look for corrections of the form

[12]

on (7)
where the last equality applies to thespecies annihilation,
provided that the conjectui®) holds. The more general re-

(6)
lation works well for the two-species annihilation with drift,

whereA and B are constants. Our strategy consists of perWherea=1/3, =7/12, andA=1/12[9].
forming a least-squares linear fit 8+ Bt~ 2 to t*c(t), for

different powersA, and searching for the value af which IV. SUMMARY AND DISCUSSION
minimizes the error. The expressi®h) is expected to work

c(t)~t “(A+Bt™2),

We have presented large-scale simulation results for
diffusion-limited n-species annihilation, in one dimension,
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FIG. 4. Scaling of concentratiom(t) =t~ *p(t?/L), for three-

species annihilation. The best data collapse at late times is obtained FIG. 5. Corrections to scaling. Simulation resultircles are
for «=1/3 andB=1/2 (shown). best fitted by Eq(6), with A=1/6 (solid line).
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using the RRC method. Our simulations contradict previougrom the typical size of simulations used commonly in the
work [4] and are in favor of new theoretical arguments ad-field is dangerous. More advanced techniques and larger
vanced by Deloubrie et al.[10]. We have also provided an simulations seem to be imperative.

expression for the correction-to-scaling expondnt valid

for diffusion-limited reactions in one dimension, where the

particles segregate into alternating domains. The corrections ACKNOWLEDGMENTS

to the main decay mode are large, and explain the failure of

Ref. [4] to obtain the correct asymptotic behavior with the We thank S. Redner for numerous illuminating discus-
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clusion to be drawn is that predicting asymptotic behaviorfor partial support of this work.
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